2021年汕头市普通高考第一次模拟考试

数学试题参考答案及评分标准

评分说明:

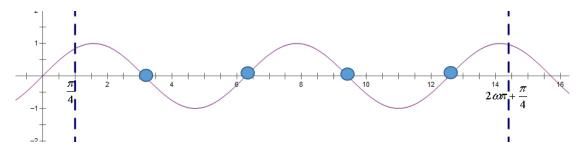
- 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
- 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
 - 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.
- 一、单项选择题:本题共12小题,每小题5分,共60分.

题号	1	2	3	4	5	6	7	8
答案	С	С	В	D	A	A	A	C

二、多项选择题:本题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分.

题号	9	10	11	12
答案	AC	AB	ACD	BD

第 11 题: 若 f(x) 在 $\left[0,2\pi\right]$ 有且仅有 4 个零点,则由 $x \in \left[0,2\pi\right]$ 得: $\left[\frac{\pi}{4},2\omega\pi+\frac{\pi}{4}\right]$



$$\phi t = \omega x + \frac{\pi}{4}$$
, $y = \sin t$ 图象如上图所示

(1)
$$\therefore 4\pi \le 2\omega\pi + \frac{\pi}{4} < 5\pi$$
 解得: $\frac{15}{8} \le \omega < \frac{19}{8}$ 故: C 正确

(2) 由图容易得到: f(x)在 $\left[0,2\pi\right]$ 有且仅有 2 个极小值点,故: A 正确

$$(3) : x \in \left(0, \frac{2\pi}{15}\right) : \omega x + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{2\pi}{15}\omega + \frac{\pi}{4}\right)$$

由 (1) 知:
$$\frac{15}{8} \le \omega < \frac{19}{8}$$
 $\therefore \frac{\pi}{2} \le \frac{2\pi}{15}\omega + \frac{\pi}{4} < \frac{19\pi}{60} + \frac{\pi}{4}$, 故 $f(x)$ 在 $\left(0, \frac{2\pi}{15}\right)$ 不单调,故 B 错

(4) 对于 D 选项,
$$\because y = f(x)$$
 图象关于 $x = \frac{\pi}{4}$ 对称

$$\therefore \frac{\omega\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} + k\pi, (k \in Z)$$

$$\therefore \omega = 1 + 4k$$

又
$$: f(x)$$
在 $\left(\frac{\pi}{18}, \frac{5\pi}{36}\right)$ 单调

$$\therefore \frac{T}{2} = \frac{\pi}{\omega} \ge \frac{5\pi}{36} - \frac{\pi}{18} = \frac{\pi}{12}$$

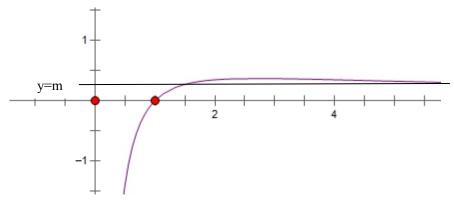
 $∴ \omega \le 12 ∴ \omega$ 的最大值为 9, 故 D 正确

第 12 题: 由
$$f(x) = \frac{\ln x}{x}, x > 0$$
 得: $f'(x) = \frac{1 - \ln x}{x^2}$

当x变化时,f'(x), f(x)变化如下表:

x	(0,e)	e	(<i>e</i> ,+∞)
f'(x)	+	0	_
f(x)	单调递增	极大值 $\frac{1}{e}$	单调递减

故,
$$f(x) = \frac{\ln x}{x}, x > 0$$
 如图所示:



A.
$$f(2) = \frac{\ln 2}{2} = \ln 2^{\frac{1}{2}}, f(3) = \ln 3^{\frac{1}{3}}$$

$$∴ \left(3^{\frac{1}{3}}\right)^{6} > \left(2^{\frac{1}{2}}\right)^{6} \quad ∴ 3^{\frac{1}{3}} > 2^{\frac{1}{2}} ∴ f(3) > f(2), \text{ id A ff}$$

B. $\because \sqrt{e} < \sqrt{\pi} < e$,且 f(x)在(0,e)单调递增

$$\therefore f\left(\sqrt{e}\right) < f\left(\sqrt{\pi}\right), \ \frac{\ln\sqrt{e}}{e} < \frac{\ln\sqrt{\pi}}{\pi} \qquad \therefore \frac{\ln e}{\sqrt{e}} < \frac{\ln\pi}{\sqrt{\pi}} \qquad \therefore \ln\pi > \sqrt{\frac{\pi}{e}} \ , \ \text{故: B 正确}$$

C.
$$: f(x) = m$$
有两个不相等的零点 x_1, x_2 $: f(x_1) = f(x_2) = m$

不妨设 $0 < x_1 < e < x_2$

证:
$$f(x_1) < f\left(\frac{e^2}{x_2}\right)$$
 即: $f(x_2) < f\left(\frac{e^2}{x_2}\right)$ 只需证: $f(x_2) - f\left(\frac{e^2}{x_2}\right) < 0 \cdots$ ①

$$\Rightarrow g(x) = f(x) - f\left(\frac{e^2}{x}\right), (x > e), \quad \emptyset, \quad g'(x) = (\ln x - 1)\left(\frac{1}{e^2} - \frac{1}{x^2}\right)$$

当
$$x > e$$
时, $\ln x > 1$, $\frac{1}{e^2} > \frac{1}{x^2}$ ∴ $g'(x) > 0$ ∴ $g(x)$ 在 $(e, +\infty)$ 单调递增

D. 设
$$2^x = 5^y = k$$
, 且 x, y 均为正数,则 $x = \log_2 k = \frac{\ln k}{\ln 2}, y = \log_5 k = \frac{\ln k}{\ln 5}$

$$\therefore 2x = \frac{2}{\ln 2} \ln k, 5y = \frac{5}{\ln 5} \ln k$$

$$\therefore \frac{\ln 2}{2} = \ln 2^{\frac{1}{2}}, \frac{\ln 5}{5} = \ln 5^{\frac{1}{5}} + 2^{\frac{1}{2}} > 5^{\frac{1}{5}} (\because \left(2^{\frac{1}{2}}\right)^{10} > \left(5^{\frac{1}{3}}\right)^{10})$$

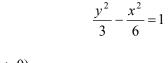
$$\therefore \frac{\ln 2}{2} > \frac{\ln 5}{5} > 0 \qquad \therefore \frac{2}{\ln 2} < \frac{5}{\ln 5} \qquad \therefore 2x < 5y, \text{ in } D \text{ in } G$$

三、填空题: 本题共 4 小题,每小题 5 分,共 20 分.

13. 7

- 14. 22.8, 38 (14 题第一空 2 分, 第二空 3 分)
- 15. 多个答案(符合要求就可以)

如:
$$y^2 - \frac{x^2}{2} = 1$$
 $\frac{y^2}{2} - \frac{x^2}{4} = 1$ $\frac{y^2}{a^2} - \frac{x^2}{2a^2} = 1$, $\frac{y^2}{m} - \frac{x^2}{2m} = 1 (m > 0)$ 16. $\frac{52}{9}\pi$



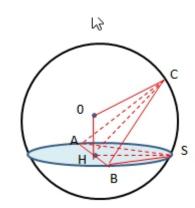
【解法 1】设|OH|=d, SH为 $Rt\Delta ABS$ 的外接圆半径,

曲图得,
$$|OH|^2 + |SH|^2 = |OS|^2$$

设外接球半径为 R,则

$$d^2 + 1 = R^2$$
 (1)

又因为二面角 S - AB - C 的大小为 60° ,则 $\angle CHS = 60^{\circ}$



∴ $\angle CHO = 30^{\circ}$, $\triangle ACHO + d^2 + CH^2 - 2d \cdot CH \cos 30^{\circ} = R^2$, (2)

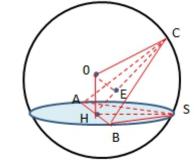
CH 为等边 $\triangle ABC$ 的高,则 $CH = \sqrt{3}$

曲 (1) (2) 得,
$$d = \frac{2}{3}$$
, $R^2 = d^2 + 1 = \frac{13}{9}$, $S = 4\pi R^2 = \frac{52\pi}{9}$

【解法2】

设 H.E 为分别为 $Rt\Delta ABS$ 和等边 ΔABC 的外接圆圆心、 分别过 H.E 作各自平面的垂线相交于点 O.O 为球心

又因为二面角 S - AB - C 的大小为 60° ,则 $\angle CHS = 60^{\circ}$



 \therefore ∠CHO = 30°, CH 为等边 ΔABC 的高,则 CH = $\sqrt{3}$

$$CE = \frac{2}{3}CH = \frac{2\sqrt{3}}{3}$$

 $EH = \frac{1}{3}CH = \frac{\sqrt{3}}{3}$,

因为
$$\angle CHO = 30^{\circ}$$
,所以 $EO = \frac{1}{3}$

在
$$Rt\Delta OEC$$
 中, $R^2 = EO^2 + CE^2 = \frac{13}{9}$, $S = 4\pi R^2 = \frac{52\pi}{9}$

四、解答题: 共70分. 解答应写出文字说明、证明过程或演算步骤.

- 17. (本小题满分10分)
- 解: (1) 选条件①,

方法一: 由
$$S_n = \frac{3^n}{2} + m$$
 得

$$\therefore a_n = S_n - S_{n-1} = \frac{3^n}{2} - \frac{3^{n-1}}{2} = 3^{n-1} \dots 2 \,$$

方法二:

当
$$n = 2$$
 时, $a_2 = S_2 - S_1 = (\frac{3^2}{2} + m) - (\frac{3^1}{2} + m) = 3$

选条件②,

方法一:

由
$$S_n = \frac{1}{2}a_{n+1} + m$$
,得

方法二:

(2)由(1)可知,
$$a_n = 3^{n-1}$$
,即 $b_n = \frac{a_n}{(a_n + 1)(a_{n+1} + 1)} = \frac{3^{n-1}}{(3^{n-1} + 1)(3^n + 1)}$6分

$$b_n = \frac{1}{2} \left(\frac{1}{3^{n-1} + 1} - \frac{1}{3^n + 1} \right) \dots 7 \, \text{f}$$

则

$$T_n = b_1 + b_2 + \dots + b_n = \frac{1}{2} \left(1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{10} + \dots + \frac{1}{3^{n-1} + 1} - \frac{1}{3^n + 1} \right) = \frac{1}{2} \left(1 - \frac{1}{3^n + 1} \right) = \frac{3^n}{2(3^n + 1)} \dots$$

.....10 分

18. (本小题满分 12 分)

解法一: (1) 在
$$\triangle ABC$$
 中, 因为 $b = \sqrt{5}$, $c = \sqrt{2}$, $\angle B = 45^\circ$

得
$$5 = 2 + a^2 - 2 \times \sqrt{2} \times a \times \frac{\sqrt{2}}{2}$$

所以
$$BC = 3$$
......3 分

(2) 在
$$\triangle ABC$$
 中,由正弦定理 $\frac{b}{\sin B} = \frac{c}{\sin C}$,

因为 $\cos \angle ADB = \frac{4}{5}$, ($\angle ADB$ 为锐角) 所以 $\sin \angle ADB = \sqrt{1 - \cos^2 \angle ADB} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$ $\sin \angle DAC = \sin(\angle ADB - \angle C)$, $= \sin \angle ADB \cdot \cos \angle C - \cos \angle ADB \cdot \sin \angle C = \frac{3}{5} \times \frac{2\sqrt{5}}{5} - \frac{4}{5} \times \frac{\sqrt{5}}{5} = \frac{2\sqrt{5}}{25} \dots 10 \ \%$ 所以 $\tan \angle DAC = \frac{\sin \angle DAC}{\cos \angle DAC} = \frac{2}{11}$ 解法二: (1) 同解法一 (2) 在 $\triangle ABC$ 中,由正弦定理 $\frac{b}{\sin B} = \frac{c}{\sin C}$, 在 $\triangle ABC$ 中,因为 $b=\sqrt{5}>c=\sqrt{2}$,所以 $\angle C$ 为锐角......7 分 因为 $\cos \angle ADB = \frac{4}{5}$,($\angle ADB$ 为锐角) 所以 $\tan \angle ADB = \frac{3}{4}$ 故 $\tan \angle DAC = \tan(\pi - (\angle ADC + \angle C))$ $= -\frac{\left(-\frac{3}{4}\right) + \frac{1}{2}}{1 - \left(-\frac{3}{4}\right) \cdot \frac{1}{2}} = \frac{2}{11}$ 12 \(\frac{1}{2}\)

所以
$$\tan \angle DAC = \frac{\sin \angle DAC}{\cos \angle DAC} = \frac{2}{11}$$

解法三: (1) 过点 A 作出高交 BD 于 F

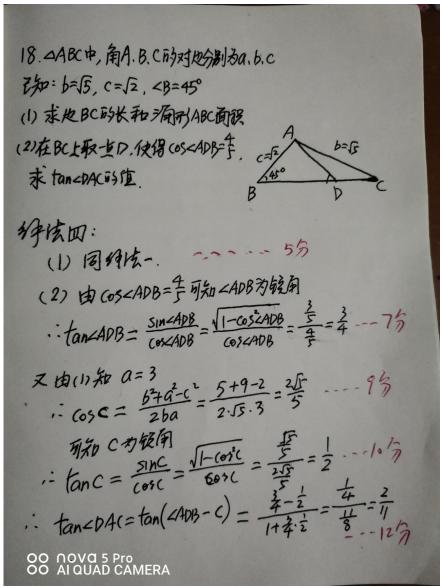
(2)
$$\triangle AFD$$
 为直角三角形,且 $|AF|=1$, $\cos \angle ADB=\frac{4}{5}$

所以
$$\sin \angle ADB = \sqrt{1 - \cos^2 \angle ADB} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$
 7分

在 $\triangle ADC$ 中由正弦定理得,

$$\frac{CD}{\sin \angle DAC} = \frac{AC}{\sin \angle ADC} \sin \angle DAC = \frac{2\sqrt{5}}{25} \dots 10 \, \%$$

所以
$$\tan \angle DAC = \frac{\sin \angle DAC}{\cos \angle DAC} = \frac{2}{11}$$
 12 分



19. (本小题满分 12 分)

<mark>解: (1)</mark>证明:连结*BO*₁,

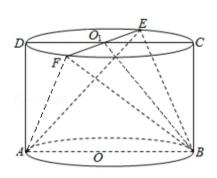
在圆柱中 001中,

 $\coprod CD \cap BC = C,$

CD,BC \subset 平面 ABCD,

又 BO_1 \subset 平面ABCD,

::在 $\triangle BEF$ 中, O_1 为 EF 中点



2) 法一: (向量法)

解:分别以EF在 $\odot O$ 所在平面内的投影、AB、OO₁为坐标轴建立空间直角坐标系(如图所示),

则 A(0, -1, 0), B(0, 1, 0), E(-1, 0, a), F(1, 0, a)... (7分)

$$\overrightarrow{AE} = (-1,1,a)$$
, $\overrightarrow{BE} = (-1,-1,a)$, $\overrightarrow{BF} = (1,-1,a)$

设平面 BEF 的法向量分别是 $\overrightarrow{n_1} = (x_1, y_1, z_1)$

则由 $\overrightarrow{n_1} \cdot \overrightarrow{BE} = 0$ 及 $\overrightarrow{n_1} \cdot \overrightarrow{BF} = 0$,

设直线 AE 与平面 BEF 所成角为 θ ,

设平面 ABE 的法向量分别是 $\overrightarrow{n_2} = (x_2, y_2, z_2)$

则由 $\overrightarrow{n_2} \cdot \overrightarrow{AB} = 0$ 及 $\overrightarrow{n_2} \cdot \overrightarrow{AE} = 0$,

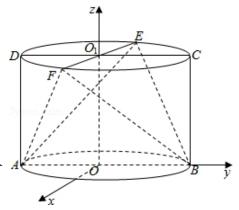
$$\therefore \cos < \overrightarrow{n_1}, \quad \overrightarrow{n_2} > = \frac{1}{3}$$

设二面角 A-BE-F 的平面角为 θ ,

$$\mathbb{N}\left|\cos\theta\right| = \left|\cos\langle\overrightarrow{n_1},\overrightarrow{n_2}\rangle\right| = \frac{1}{3},$$

由图像可知, θ 为锐角,

2) 法二: (传统法)



在Δ*ABO*₁,
$$AO_1 = BO_1 = \sqrt{a^2 + 1}$$
, 由等积法

$$\frac{1}{2} \cdot 2 \cdot a = \frac{1}{2} \sqrt{a^2 + 1} \cdot AH$$
, $AH = \frac{2a}{\sqrt{a^2 + 1}} \cdot \cdots \cdot (8 \%)$

$$\sin \angle AEH = \frac{AH}{AE} = \frac{2a}{\sqrt{(a^2 + 1) \cdot (a^2 + 2)}} = \frac{\sqrt{6}}{3}$$

化简
$$(a^2-2) \cdot (a^2-1) = 0, \because a > 1 \therefore a = \sqrt{2} \cdot \cdots$$
 (9分)

 $\therefore AB = BE = AE = 2$,取BE的中点M,连AM,HM,则AM \bot BE,HM \bot BE,

$$AM = \sqrt{3}, HM = \sqrt{AM^2 - AH^2} = \sqrt{3 - \frac{8}{3}} = \frac{\sqrt{3}}{3} \cdots$$
 (11½)

$$\therefore \cos \angle HMA = \frac{HM}{AM} = \frac{1}{3}$$

::二面角A-BE-F平面角的余弦值为 $\frac{1}{3}$ ······ (12分)

20. (本小题满分 12 分)

解: (1) 根据所提供的数据,可得2×2列联表:

	合格品	次品	合计
甲	80	20	100
Z	95	5	100
合计	175	25	200

.....2 分

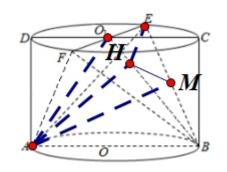
设 H_0 :产品的合格率与技术升级无关.

$$H^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)} ,$$

$$P(K^2 \ge k_0) = 0.005$$

故有99.5%的把握认为产品的合格率与技术升级有关......5分

(2) 解法一: 甲生产线抽检的产品中有 35 件 A 等级,45 件 B 等级,20 件 C 等级,…6 分对于甲生产线,单件产品利润 X 的取值可能为 m-20 ,20 ,-20 , ……………7 分 X 的分布列如下:



X	m-20	20	-20
P	$\frac{7}{20}$	$\frac{9}{20}$	$\frac{1}{5}$

Y	m-20	20	-20
P	$\frac{13}{20}$	$\frac{3}{10}$	$\frac{1}{20}$

$$\mathbb{P}(Y) = (m-20) \times \frac{13}{20} + 20 \times \frac{3}{10} - 20 \times \frac{1}{20} = \frac{13}{20}m - 8$$

依题意.
$$E(Y) - E(X) = \frac{13}{20}m - 8 - \left(\frac{7}{20}m - 2\right) = \frac{6m}{20} - 6 = 12$$
,

(2) 解法二: 甲生产线抽检的产品中有 35 件 A 等级,45 件 B 等级,20 件 C 等级,……6 分 乙生产线抽检的产品中有 65 件 A 等级,30 件 B 等级,5 件 C 等级; …… 7 分 因为用样本的频率估计概率

所以对于甲生产线,单件产品的利润
$$\overline{x}_{\mathbb{P}} = \frac{35 \times m + 45 \times 40 - 100 \times 20}{100} = \frac{7}{20} m - 2$$

9 F

对于乙生产线,单件产品的利润
$$\overline{x}_{\text{Z}} = \frac{65 \times m + 30 \times 40 - 100 \times 20}{100} = \frac{13}{20} m - 8$$

......11 分

依题意.
$$\overline{x}_{\mathbb{Z}} - \overline{x}_{\mathbb{H}} = \frac{13}{20}m - 8 - \left(\frac{7}{20}m - 2\right) = \frac{6m}{20} - 6 = 12$$
,

21. (本小题满分 12 分)

当0 < x < 1时,f'(x) < 0, f(x)单调递减;

当
$$x > 1$$
时, $f'(x) > 0$, $f(x)$ 单调递增;……2分

当
$$a > 1$$
时, $f(e^{-a}) > 0, f(1) < 0, f(e^{a}) = e^{a} - 2a > 0,$

所以
$$\exists x_1 \in (e^{-a}, 1)$$
 使得 $f(x_1) = 0$, $\exists x_2 \in (1, e^a)$ 使得 $f(x_2) = 0$,

(2) 由(1)可知,
$$0 < x_1 < 1 < x_2$$
,

要证
$$x_1 + x_2 < \frac{4a + 2}{3}$$

即证
$$x_2 < \frac{4a+2}{3} - x_1 = \frac{4(x_1 - \ln x_1) + 2}{3} - x_1 = \frac{x_1 - 4\ln x_1 + 2}{3}$$

构造函数
$$g(x) = \frac{x - 4 \ln x + 2}{3}$$
, $(0 < x < 1)$, 则 $g'(x) = \frac{x - 4}{3x} < 0$

所以
$$g(x)$$
在 $(0,1)$ 单调递减, $g(x) > g(1) = 1$.

因为 f(x) 在 $(1,+\infty)$ 上单调递增,

所以只需证
$$f(x_2) < f(\frac{x_1 - 4 \ln x_1 + 2}{3})$$

即证
$$f(x_1) < f(\frac{x_1 - 4 \ln x_1 + 2}{3})$$

构造函数
$$h(x) = f(x) - f(\frac{x - 4\ln x + 2}{3}), (0 < x < 1),$$

$$h'(x) = \frac{2x+1}{3x} + \frac{1}{x-4\ln x + 2} \cdot \frac{x-4}{x}$$
 9 \(\frac{2}{x}\)

下面证 h'(x) > 0 在 $x \in (0,1)$ 时恒成立

即证
$$\ln x - \frac{(x+5)(x-1)}{4x+2} < 0$$

构造函数
$$\varphi(x) = \ln x - \frac{(x+5)(x-1)}{4x+2}, (0 < x < 1)$$

数学试题参考答案及评分标准 第 13 页 共 18 页

因此 $\varphi(x)$ 在(0,1)上单调递增,从而 $\varphi(x) < \varphi(1) = 0$,

$$∴ h'(x) > 0$$
 在 $x ∈ (0,1)$ 时恒成立

 $\therefore h(x)$ 在 $x \in (0,1)$ 时单调递增

$$\therefore h(x) < h(1) = 0$$
 成立,即 $f(x_1) < f(\frac{x_1 - 4 \ln x_1 + 2}{3})$

22. (本小题满分 12 分)

解: (1) 方法一:

在x轴负半轴上取点Q,使得Q、M 关于原点对称,连接PQ,

所以动点P的轨迹是以Q、M为焦点的椭圆(左右顶点除外)

$$:M(\sqrt{3},0), Q(-\sqrt{3},0)$$

$$\therefore 2a = 4, c = \sqrt{3}, \qquad 3 \text{ }$$

故
$$b^2 = a^2 - c^2 = 1$$

方法二: 设点 P(x,y)

依题意
$$\left| \overrightarrow{MP} \right| + \left| \overrightarrow{ON} \right| = \left| \overrightarrow{OP} - \overrightarrow{OM} \right| + \left| \overrightarrow{OP} + \overrightarrow{OM} \right| = 4$$
,

$$\therefore \sqrt{(x-\sqrt{3})^2 + y^2} + \sqrt{(x+\sqrt{3})^2 + y^2} = 4 > 2\sqrt{3}, \qquad 2\sqrt{3}$$

所以动点P的轨迹为椭圆(左右顶点除外)

故
$$b^2 = a^2 - c^2 = 1$$

(2) ①

1° 当 l_1 垂直于 x 轴时, AB 的中点 $E(\sqrt{3},0)$, 直线 l_2 为 x 轴, 显然与椭圆 $\frac{x^2}{4}$ + y^2 = 1 ($y \neq 0$) 无

 2° 当 l_1 不垂直于x轴时,不妨设直线 l_1 的方程为 $y=k(x-\sqrt{3}),(k\neq 0)$, $A(x_1,y_1),B(x_2,y_2)$

由
$$\begin{cases} y = k(x - \sqrt{3}) \\ x^2 + 4y^2 = 4 \end{cases}$$
 得, $(4k^2 + 1)x^2 - 8\sqrt{3}k^2x + 12k^2 - 4 = 0$

容易知道: $\Delta > 0$

$$\therefore y_1 + y_2 = k(x_1 + x_2) - 2\sqrt{3}k = \frac{8\sqrt{3}k^3}{4k^2 + 1} - 2\sqrt{3}k = \frac{-2\sqrt{3}k}{4k^2 + 1}$$

$$\therefore E\left(\frac{4\sqrt{3}k^2}{4k^2+1}, \frac{-\sqrt{3}k}{4k^2+1}\right), \because l_1 \perp l_2 \therefore 以 - \frac{1}{k}$$
代替 k 得, $F\left(\frac{4\sqrt{3}}{k^2+4}, \frac{\sqrt{3}k}{k^2+4}\right)$

∴ 直线 *EF* 的方程为:
$$y + \frac{\sqrt{3}k}{4k^2 + 1} = \frac{5k}{4(1 - k^2)} (x - \frac{4\sqrt{3}k^2}{4k^2 + 1})$$
, $(k \neq \pm 1)$

由椭圆的对称性可知,若存在这样的定点必在x轴上.令y=0,则 $\frac{\sqrt{3}k}{4k^2+1}=\frac{5k}{4(1-k^2)}(x-\frac{4\sqrt{3}k^2}{4k^2+1})$

$$\therefore x = \frac{16\sqrt{3}k^2 + 4\sqrt{3}}{5(4k^2 + 1)} = \frac{4\sqrt{3}(4k^2 + 1)}{5(4k^2 + 1)} = \frac{4\sqrt{3}}{5}$$

当
$$k=\pm 1$$
时, $E\left(\frac{4\sqrt{3}}{5},\frac{-\sqrt{3}}{5}\right)$, $F\left(\frac{4\sqrt{3}}{5},\frac{\sqrt{3}}{5}\right)$,显然直线 EF 恒过定点 $\left(\frac{4\sqrt{3}}{5},0\right)$

$$\therefore y = \frac{1}{4(1-k^2)} (x - \frac{1}{k^2 + 4}) + \frac{1}{k^2 + 4}$$

$$= \frac{5k}{4(1-k^2)} \left[x - \frac{4\sqrt{3}}{k^2 + 4} + \frac{4(1-k^2)}{5k} \cdot \frac{\sqrt{3}k}{k^2 + 4} \right]$$

$$= \frac{5k}{4(1-k^2)} \left[x - \frac{20\sqrt{3} - 4\sqrt{3}(1-k^2)}{5(k^2 + 4)} \right]$$

$$= \frac{5k}{4(1-k^2)} \left[x - \frac{16\sqrt{3} + 4\sqrt{3}k^2}{5(k^2 + 4)} \right]$$

$$= \frac{5k}{4(1-k^2)} \left(x - \frac{4\sqrt{3}}{5}\right)$$

当
$$k = \pm 1$$
时, $E\left(\frac{4\sqrt{3}}{5}, \frac{-\sqrt{3}}{5}\right)$, $F\left(\frac{4\sqrt{3}}{5}, \frac{\sqrt{3}}{5}\right)$,显然直线 EF 恒过定点 $\left(\frac{4\sqrt{3}}{5}, 0\right)$

② 由①知:
$$x_1 + x_2 = \frac{8\sqrt{3}k^2}{4k^2 + 1}, x_1x_2 = \frac{12k^2 - 4}{4k^2 + 1}$$

$$|AB| = \sqrt{1 + k^2} \sqrt{(x_1 + x_2)^2 - 4x_1 x_2}$$

$$= \sqrt{1 + k^2} \sqrt{\frac{192k^4}{(4k^2 + 1)^2} - 4 \cdot \frac{12k^2 - 4}{4k^2 + 1}}$$
10 \(\frac{2}{3}\)

$$=\frac{4(k^2+1)}{4k^2+1}$$

同理可得:
$$|CD| = \frac{4(k^2+1)}{k^2+4}$$

∴ 四边形
$$ACBD$$
 的面积 $S = \frac{1}{2}|AB||CD| = \frac{8(k^2+1)}{(4k^2+1)(k^2+4)}$11 分

$$♦ t = k^2 + 1$$
, $⋈ t > 1$

$$\therefore S = \frac{8t^2}{(4t-3)(t+3)} = \frac{8t^2}{4t^2+9t-9} = \frac{8}{-\frac{9}{t^2} + \frac{9}{t} + 4} = \frac{8}{-\left(\frac{3}{t}\right)^2 + 3 \cdot \frac{3}{t} + 4}$$

∴
$$t > 1$$
 ∴ $0 < \frac{3}{t} < 3$ ∴ $= \frac{3}{t} = \frac{3}{2}$, $= \pm 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $=$

故: 四边形
$$ACBD$$
 面积最小值为 $\frac{32}{25}$ 12 分

方法三

(2) 设直线 l_1 的方程为: $x-\sqrt{3}=my$,由题意 $m\neq 0$,则直线 l_2 的方程为: $x-\sqrt{3}=-\frac{1}{m}y$,

直线 l_1 、 l_2 均过椭圆的焦点(椭圆内一点), l_1 、 l_2 与椭圆必有交点。设 $A(x_1,y_1)$, $B(x_2,y_2)$

$$\pm \begin{cases} x - \sqrt{3} = my \\ x^2 + 4y^2 = 4 \end{cases} \Rightarrow (m^2 + 4)y^2 + 2\sqrt{3}my - 1 = 0, \Delta > 0,$$

$$y_1 + y_2 = \frac{-2\sqrt{3}m}{m^2 + 4}, x_1 + x_2 = \frac{8\sqrt{3}}{m^2 + 4}$$
 6 \(\frac{\frac{1}{2}}{2}\)

$$\therefore E(\frac{4\sqrt{3}}{m^2+4}, \frac{-\sqrt{3}m}{m^2+4}), \, \text{以} - \frac{1}{m} \text{ 代替 } m \text{ 得: } F(\frac{4\sqrt{3}m^2}{4m^2+1}, \frac{-\sqrt{3}m}{4m^2+1}),$$

直线
$$EF$$
 的斜率是: $k_{EF} = \frac{5m}{4(m^2 - 1)} (m \neq \pm 1)$, 7分

直线 EF 的方程是:
$$y + \frac{\sqrt{3}m}{m^2 + 4} = \frac{5m}{4(m^2 - 1)}(x - \frac{4\sqrt{3}}{m^2 + 4})$$

令
$$y = 0, x = \frac{4\sqrt{3}m^2 + 16\sqrt{3}}{5(m^2 + 4)} = \frac{4\sqrt{3}}{5}$$
,直线 EF 恒过定点 $\left(\frac{4\sqrt{3}}{5}, 0\right)$ 8分,

当
$$m = \pm 1$$
 时,直线 EF 恒过定点 $\left(\frac{4\sqrt{3}}{5}, 0\right)$ 。

综上,直线
$$EF$$
 恒过定点 $\left(\frac{4\sqrt{3}}{5},0\right)$ 。9分

$$|AB| = \frac{4(1+m^2)}{4+m^2}, |CD| = \frac{4(m^2+1)}{4m^2+1}, 10\%$$

$$S = \frac{1}{2} |AB| |CD| = \frac{8(m^2+1)^2}{(m^2+4)(4m^2+1)} \ge \frac{8(m^2+1)^2}{(\frac{m^2+4+4m^2+1}{2})^2} = \frac{32}{25}$$

当且仅当 $m^2 = 1$ 取等号。......12分.

```
第22度求定点的舒炫。
在未出 E(報答、 3件)和 F(報 12件)
(k+0).
由被国的对称性可知直接EF放进入结中人
一个定点 M(26,0)
... EM 与 MF 考 13

中 EM = (26-41) (24)

MF = (報子 16, 44)

(k+4) (2-41) = (14)

(k+4) (2-41) = (14)

(k+4) (2-41) = (14)

(k+4) (2-41) = 4(3-(k+4))

(を存在 3分)

OO nova 5 Pro
OO Al QUAD CAMERA
```